If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+13x-95=0
a = 5; b = 13; c = -95;
Δ = b2-4ac
Δ = 132-4·5·(-95)
Δ = 2069
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{2069}}{2*5}=\frac{-13-\sqrt{2069}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{2069}}{2*5}=\frac{-13+\sqrt{2069}}{10} $
| x^2+13x-102=0 | | 3x^2-7x+87=0 | | 51=o | | x^2+19x-120=0 | | x^2+13x-484=0 | | 6y8=2y | | .25=3+.15m | | 3x^2-7x+25=0 | | 3x^2+6x-170=0 | | 9x-40+2x+42=90 | | 4x^2+9x-150=0 | | 984=3r84 | | x^2+7x-264=0 | | 20=8.5(d) | | 2x+42=9x-40 | | 9x-40=2x+42 | | 51/21=34/2x+3 | | 6(x+1)=21x-15 | | x^2+12=4x | | Y=2/5x2 | | -18+26=-4(x+1) | | 4b-10=26+8 | | -21+9x=2x | | s-7=-12 | | 6=o | | -6+-2h=-16 | | Y=6.25x+10 | | (5x+54)=14 | | 120=7x-6+3x-4 | | -3x-4(-1-3x)=2 | | (8y-6y)=28 | | 3x(4x-6)+3(x=4) |